

Guia Safe and Sustainable by Design

Título Checklist – Descarbonização e Alterações Climáticas

Copyright © 2023 CENTIMFE

Edição

Centimfe

Cetto Tennificio de Indiánio de Mobles Surmentos Empirios a Biósicos

1ª Publicação Maio 20232ª Publicação Julho 2023

Coordenação de redação Ana Pires, Cátia Guarda e João Caseiro

Design gráfico e paginação Cátia Guarda

Cofinanciado por

Todos os direitos reservados. Nenhuma parte desta publicação pode ser reproduzida, transmitida ou cedida de qualquer forma ou por qualquer meio, eletrónico ou mecânico, incluindo fotocópia, gravação ou qualquer sistema de armazenamento ou recuperação de dados, sem a permissão prévia por escrito, do editor.

Índice

1. Guia de boas práticas para o Cluster Engineering & Tooling	4
2. Casos de estudo sobre Safe & Sustainable by Design aplicável na cadeia de valor do plástico	۷
3. Casos de estudo sobre sobre Safe & Sustainable by Design na produção de moldes	
5. Referências bibliográficas	6

1 Guia de boas práticas para o Cluster Engineering & Tooling

Ao analisar-se toda a cadeia de valor do Cluster Engineering & Tooling, os casos de estudo que serão considerados no guia incidem sobre os processos de fabrico e produção de polímeros. Os casos de estudo apresentados são exemplos de boas práticas que poderão resultar de outros setores, mas que se prevê que possam ser adotadas pelas empresas do Cluster Engineering & Tooling, com as devidas adaptações necessárias.

2 Casos de estudo sobre *Safe & Sustainable by Design* aplicável na cadeia de valor do plástico

Polímero produzido sem	Empresa	Considerações
halogéneos, retardantes de	DSM	Funcionalidade do material a ser
chama bromados, PVC e		desenvolvido sem os aditivos.
plastificantes		
Requisitos a ter em conta	Vantagens	
Alternativa não se encontra na	Polímero de menor perigosidade;	
lista de substâncias perigosas e	Polímero capaz de ser reciclável.	
não tem nenhuma classificação		
oficial de perigosidade.		

Fonte: [1]

Empresa	Considerações	
Oerlikon Metaplas	A alternativa encontrada baseia-se em	
	PVD (physical vapor deposition), ficando a	
	camada de metal entre 2 camadas de UV	
	coating.	
Vantagens		
Passível de ser reciclado;		
Não é CMR – cancerígeno, mutagénico ou tóxico para a		
reprodução;		
Não causa problemas cutâneos nem respiratórios, não tem		
problemas de ecotoxicidade nem de perigosidade física.		
	Vantagens Passível de ser reciclad Não é CMR – canceríge reprodução; Não causa problemas o	

Fonte: [1]

	Empresa	Considerações
Substituição do DET por DLA	Natureworksllc	Apesar do potencial de substituição, é
Substituição de PET por PLA (polímero de base biológica)		importante conhecer o tipo de matéria-
		prima que está a ser utilizada na produção
		do PLA (resíduos, milho).
Requisitos a ter em conta	Vantagens	
Substituição tem de ser capaz	Produção do polímero de origem biológica com menor pegada	
de cumprir com os requisitos	do carbono potencial.	
técnicos da utilização prevista.		

Fonte: [1]

Casos de estudo sobre *Safe & Sustainable by Design* na produção de moldes

	Empresa	Considerações	
Óleos de maquinação de	Belgin Oil	É importante associar o uso do óleo à	
origem não fóssil e		metodologia minimum quantity	
biodegradável		lubrification (MQL), para garantir a máxima	
		eficiência.	
Requisitos a ter em conta	Vantagens		
Antes de se optar pelo óleo é	Menor perigosidade no manuseamento;		
necessário verificar as	Resíduo de menor perigosidade;		
condições de operação,	Tem por base um recurso renovável;		
nomeadamente a viscosidade	As perdas de óleo durante o processo terão menor impacte		
	ambiental do que de um óleo de base mineral.		

Fonte: [2]

4 Referências bibliográficas

- [1] Subsportpuls (Substitution Support Portal). https://www.subsportplus.eu/subsportplus/EN/Cases/Case-story-database/case-story-database_details_node.htm (acedido: 15 de maio de 2023).
- [2] Smart, 2021. "Innovatio in lubrication for sustainable manufacturing", smarteureka.com. https://www.smarteureka.com/projects/innovation-in-lubrication-for-sustainable-manufacturing/ (acedido: 15 de maio de 2023).